
Teaching ICT Quality
Stephen B. Seidman

Texas State University

What is quality?

• The Oxford English Dictionary gives 16

primary definitions for “quality”.

• Definition 8.c is most relevant to the

theme of this conference. In this long-

standing usage (the OED gives a

citation from 1771), “quality” is defined

simply as “excellence, superiority”.

Excellence, superiority?

• The importance of context

• Excellence, according to whom?

• Superiority, compared with what?

Quality in ICT

• Topics from the conference call for

papers

• Quality in Agile Methods

• Quality in Web Engineering

• Quality Evolution

• Quality in Verification and Validation

Dimensions of ICT quality

• Algorithm quality

• Design: elegance?

• Implementation: performance, metrics,

scalability

• Architecture quality

• Hardware or software?

• Elegance?

• Software quality

• Processes or products?

• “the degree to which a set of inherent

characteristics fulfills requirements” (ISO

9001)

• Functionality, reliability, usability, efficiency,

maintainability, portability (ISO 9126)

• Three levels of quality (Denning 1992)

• All basic promises were met.

• No negative consequences were produced.

• The customer was delighted.

• User interface quality

• (Raskin, The Humane Interface, 2000)

• An interface should be

• effective, habituating, reliable, efficient, and

tested

What can we do with these ideas?

• How do we assess quality on any of

these dimensions?

• How do we teach our students to seek

and assess quality?

Assessing ICT quality

• Each dimension has its own approach

to assessing quality

• Quantitative approaches: metrics

• Qualitative approaches: the “-ilities”

Lessons from engineering?

• The engineering profession is much

older than ICT and equally interested in

quality.

• How does engineering think of, assess,

and teach quality?

• Are there lessons to be learned from

engineering?

What is the engineer’s ultimate

goal?

• A manufacturing process to produce

large numbers of products?

• A single product?

• bridge, power plant, refinery, ...

Quality engineering for

manufacturing
• Product quality

• effectiveness (suitability for purpose) of the

products produced

• Design quality

• originality, feasibility

• Process quality

• TQM: process quality as conformance to internal

requirements

• Six Sigma: process quality as defect reduction via

data/statistical analysis

Teaching about process quality

• This topic is always part of industrial,

systems, and manufacturing

engineering curricula; it sometimes

appears in other engineering curricula.

• The following image describes a “six-

sigma” course from MIT.

• There are many graduate and

continuing education programs and

courses in “quality engineering” that

emphasize process quality and

statistical techniques.

• For example, Rutgers University (New

Jersey, USA) offers a professional

continuing education course titled

“Fundamentals of Quality Engineering”:

Quality engineering for single

products

• Process or product quality?

• What is the quality of a refinery?

• Is it the same as the quality of the production

process that the refinery embodies? What about

the quality of the design process, or of the design?

• Avoidance of failures?

• “Failure is an unaccepted difference between expected and

observed performance” (ASCE)

• What is the quality of a bridge?

• Conformance to requirements

• Maintainability?

• Avoidance of failures?

• Quality of the design process, or of the

design?

Teaching about quality via

failure

• Engineers have always learned from

failure:

•“The single most fruitful source of lessons in

engineering judgment exists in the case histories of

failures, which point incontrovertibly to examples of

bad judgement and therefore provide guideposts for

negotiating around the pitfalls in the design process.”

(Petroski, Design Paradigms)

• Success is a much less successful

teacher

•“Basing structural extrapolation on models of success

rather than on failure avoidance ... [culminated] in the

collapse of the Tacoma Narrows Bridge in 1940.”

(Petroski, Design Paradigms)

• Failures have had an important impact

on engineering practice.

• Teaching engineering students about

quality therefore requires that we teach

them about failure.

Failure in the engineering

curriculum

• MIT: Design by Failure: proposed

course for all first-year engineering

students

• Examples from all engineering disciplines

• Civil: Tacoma-Narrows Bridge failure

• Chemical: Bhopal accident

• Nuclear: Chernobyl

• Rochester Institute of Technology

• Use of aircraft crash cases in teaching

• design failures

• maintenance failures

• humans and computers in the loop

Teaching ICT Students about

Quality
• Software engineering

• For many years, software engineering (and software

engineering education) has paid explicit attention to

“quality”.

• ICT Job frameworks

• Quality topics appear explicitly in European job

frameworks.

• Computer Science

• How do we teach beginning students about code and

algorithm quality?

Quality in Software Engineering

• SWEBOK (IEEE-CS body of

knowledge)

• Fundamentals

• Value and cost of quality

• Static techniques

• Formal methods

• Verification and validation

• Reviews and audits

• Dynamic techniques

• Testing

• Processes vs. Products

• Process quality

• Standards for software engineering processes

• “... the quality of a software product is largely

determined by the quality of the software

development and maintenance processes used to

build it” (Paulk, 1995)

• Product quality

• applies to all software products: requirements

specifications, architectures, designs, code, test

plans, documentation, reports, ...

• SE2004

• Software quality is a pervasive concept that

affects, and is affected by, all aspects of software

development, support, revision, and

maintenance.

• It encompasses the quality of work products

developed and/or modified (both intermediate

and deliverable work products) and the quality of

the work processes used to develop and/or

modify the work products.

• Quality work product attributes include

functionality, usability, reliability, safety,

security, maintainability, portability, efficiency,

performance, and availability.

• Software quality concepts and culture

• Software product quality standards:

ISO-IEC 9126

• Software process quality: ISO 9000,

CMMI

• Software quality processes: IEEE 730,

IEEE 1061

• Process assurance: planning and

reporting

• Product assurance

• Root cause analysis, defect prevention

• Metrics and measurement

• Assessment of quality attributes

Teaching SW engineers about quality

• The usual approach

• Faculty lectures on quality topics and

standards

• Student readings of appropriate materials

• Problems with this approach

• Lack of student interaction

• Disconnection with project work

Other approaches

• Problem-based learning (PBL):

• a student-centered instructional strategy in which

students collaboratively solve problems and reflect

on their experiences (Wikipedia)

• Characteristics include

• Learning is driven by challenging, open-ended, ill-defined

and ill-structured, practical problems.

• Students work in collaborative groups.

• Teachers take on the role of "facilitators" of learning.

• (Richardson and Delaney, 2010) Teams of

M.Sc. students in a SwE quality module at

the University of Limerick were asked to

write the software quality plan for a hospital.

They first viewed a video that gave them a

sense for the context:

•www.youtube.com/watch?v=-xrrk-XhgVc

http://www.youtube.com/watch?v=-xrrk-XhgVc
http://www.youtube.com/watch?v=-xrrk-XhgVc
http://www.youtube.com/watch?v=-xrrk-XhgVc
http://www.youtube.com/watch?v=-xrrk-XhgVc
http://www.youtube.com/watch?v=-xrrk-XhgVc

• The lecturer served as a facilitator to

the groups, circulating among them.

• Short lectures were given on specific

topics, as needed.

• A subject-matter expert was made

available to the groups.

• Authors’ conclusions:

• PBL seems to have significantly increased

student involvement and satisfaction.

• PBL may not suit all student learning styles.

• Assessment of student learning may be

more difficult with PBL.

• It’s important to have strong links with

industry when using PBL to teach software

quality.

• Major project course

• (Towhidnejad 2002; Doerschuk 2004)

• Example 1: This undergraduate class is structured

as a small software development organization.

divided into five-member development teams;

students use Humphrey’s PSP.

• Build 1: generation of requirements and design documents

and a prototype

• Build 2: development of final product

• The software quality assurance function is

provided by graduate students in a software

testing course.

• Build 1

• formal inspection of requirements and design specification documents

• construction of test plan from requirements specification

• Build 2

• undergraduate students provided internal SQA functions

• graduate students provided external SQA functions, such as independent

verification and validation

• Example 2: Student development teams

are divided into subteams

• Team A develops the design

• Team B inspects the design

• Teams switch roles between development

phases

• Comments

• The authors looked at interaction between

students, but this could have been studied

more formally (phenomenography?)

• Both papers observed that undergraduate

students don’t seem to understand the

importance of software quality.

• It’s not easy to incorporate realistic software

processes (including quality processes) into

student environments.

The need to teach about failure

• It’s as important to expose software

engineering students to failures as it is

in other branches of engineering.

• System and software engineering

failures are well-known and widely

reported.

• Well-documented major cases include

• London Ambulance Service dispatching system

(1987-92)

• THERAC-25 radiation therapy instrument (1985-

87)

• US Federal Aviation Administration (FAA):

Advanced Automation System ($2.5 billion, 1989-

1994)

• US Federal Bureau of Investigation (FBI): Virtual

Case File ($170 million, 2001-2005)

• Failures do appear in computing

curricula; the THERAC-25 is often

discussed in courses dealing with ethics

and technology.

• Larger software engineering failures

can be considered as examples of

failed software engineering processes:

• FAA: incomplete and unstable requirements

• LAS: testing; verification and validation

• However, software engineering

students are rarely if ever presented

with detailed case studies of

system/software failures.

• Few complete case studies are

available. Exceptions include:

• LAS:

www.cs.ucl.ac.uk/staff/A.Finkelstein/las/lasc

ase0.9.pdf

• Therac-25: Leveson, Safeware, System

Safety and Computers, 1995

http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las/lascase0.9.pdf
http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las/lascase0.9.pdf

• However, the study of failure needs to

play a role across the software

engineering curriculum.

• Examples of industrial-strength design

and architecture failures would be

particularly interesting.

• Parnas’ 1972 paper On the Criteria to Be

Used in Decomposing Systems into

Modules is useful in this context, but the

application is still rather small.

Quality in ICT Job

Frameworks

• Job frameworks for ICT

• SFIA (UK), AITT (Germany), CIGREF

(France)

• European e-Competence reference

framework (www.ecompetences.eu)

• Topics listed include quality strategy development,

quality assurance and quality management

http://www.ecompetences.eu

• ICT Lane: qualifications framework, within

the ambit of the European Qualifications

Framework

• The idea is to link qualifications to appropriate

framework items.

• It would therefore be possible in principle to

identify a specific qualification that would

correspond to a quality item in a job framework.

• We could then see how ICT quality topics are

taught to those seeking this qualification.

• However, all of this is still a work in progress.

A Framework for ICT

Foundation Degrees

• A recent effort in the UK (Foundation

Degrees Forward: www.fdf.ac.uk) is

explicitly linked to the SFIA framework.

• A degree specification was developed

as part of a strategic partnership

between ICT employers and higher

education institutions.

http://www.fdf.ac.uk

• One of the FDF learning outcomes is

devoted entirely to quality; its indicative

content includes

• The components of software quality – internal and

external aspects; validation and verification, reliability,

conformance, completeness, maintainability

• This specification requires courses to be

collaborative efforts between industry and

academia.

• Workplace efforts and assessment are

therefore an essential part of such courses.

• Although the FDF specification of

foundation ICT degrees appears to be well-

founded, it remains to be seen how quality

topics are actually taught/learned and

assessed within this hybrid

university/workplace educational model.

The need to teach ICT students

about code quality

• What do our students mean when they

talk about the quality of a computer

program?

• Where do they get their ideas about

code quality?

• How can we teach introductory students

about code quality?

•A recent study (Lewis et al, CACM, May

2010) surveyed student opinions on the

following statements:

• On a programming assignment, what matters is

getting the desired result, not how you arrive at

the result.

• 58% of first-year students agreed

• 54% of final-year students agreed

• If a program works it doesn’t matter how it is

written.

• 45% of first-year students agreed

• 20% of final-year students agreed

• Doing things the “right” way isn’t as

important as just pushing through to a

solution.

• 56% of first-year students agreed

• 32% of final-year students agreed

• This data was obtained from CS

students at a major US university.

Although quality was not the specific

target of this study, it suggests that a

significant proportion of successful CS

students may lack a strong sense for

the meaning of code quality.

• This topic is pursued further in a recent

paper by Pears. He surveys literature

on student learning in programming

courses, and reports that:

• Early learning in programming is dominated

by syntactic concerns.

• Most students lack a holistic view of

program function.

• Students focus on code at the operation/line

level.

• He summarizes this literature by saying

• “...many students at the conclusion of an

introductory programming course when given a

functional description are unable to write a piece of

software that meets the requirements.”

• “...many students are not able to explain what a

piece of code does in a more advanced manner

than the line by line approach ... ”

• Kolikant and Mussai (2008) state

• “... as long as they had any operations

written correctly students considered the

program partially correct”

• They feel that this conception may derive

from the way in which student programs are

assessed.

• Students often feel that if a program

compiles it is correct (and therefore of

good quality).

• ... there were some students who [at the end of the

academic year] still believed ... that a program is

correct when it is free from syntactical errors”

(Stamouli and Huggard, 2006)

What can be done?

• Some scholars (e.g., Patton and McGill,

2006) propose that software quality can

be taught by utilizing longitudinal

portfolios of software artifacts, along

with automated software quality

metrics.

• Pears suggests that educators should

• adopt an approach to code development

based on holistic goals and plans

• design formative assessment strategies that

emphasize quality aspects

• include testing and debugging as explicit

parts of the curriculum

Build on innate student

understanding

• A recent paper (CACM, July 2010),

examined the concepts of concurrency

held by students at the start of an

introductory programming course.

• It concluded that these students’

intuitive understanding of concurrency

was roughly equivalent to that of

experienced students beginning a

concurrency course.

• If this is the case for concurrency,

perhaps students also have intuitive

concepts of software quality. (Future

research topic)

• If this is the case, can such concepts be

used as the basis for a deeper

understanding of software quality?

Conclusions

• How should we teach ICT students

about quality?

• It depends on the target; are we

interested in process quality or product

quality?

• Process quality

• It may make sense to teach engineering

process quality: Six Sigma, TQM

• We definitely need to teach key software

engineering quality processes throughout

ICT curricula:

• Testing

• Validation and verification

• Product quality

• Use software engineering failures as

teaching tools

• This is done much more in other engineering

disciplines.

• Software engineering has good examples of failed

development projects and software processes; all

ICT students need to see such examples.

• Are there examples of poorly crafted industrial-

strength software products below the system level:

algorithms, requirements, architecture, design,

code?

• Such examples would be very useful in the

classroom, but they may be difficult to obtain.

• What about artifacts from other ICT

disciplines? Do we have examples of

industrial-strength instruction sets of

poor quality that can be used in

teaching?

• What about user interfaces, hardware

architectures, and operating system

designs?

• We need to work with beginning

students to get them to understand that

quality is an essential aspect of good

code.

• We need to reinforce this understanding

throughout all ICT curricula for all

artifacts.

