Teaching ICT Quality

Stephen B. Seidman
Texas State University

What Is quality?

® The Oxford English Dictionary gives 16
primary definitions for “quality”.

® Definition 8.c is most relevant to the
theme of this conference. In this long-
standing usage (the OED gives a
citation from 1/771), “quality” is defined
simply as “excellence, superiority”.

Excellence, superiority?

® The importance of context
® Excellence, according to whom?

® Superiority, compared with what?

Quality in ICT

® Topics from the conference call for
papers

® Quality in Agile Methods
® Quality in Web Engineering
® Quality Evolution

® Quality in Verification and Validation

Dimensions of ICT quality

® Algorithm quality
® Design: elegance?

® Implementation: performance, metrics,
scalability

® Architecture quality
® Hardware or software?

® Elegance?

® Software quality

® Processes or products?

® “the degree to which a set of inherent

characteristics fulfills requirements” (ISO
9001)

Functionality, reliability, usabllity, efficiency,
maintainability, portability (ISO 9126)

® Three levels of quality (Denning 1992)
® All basic promises were met.
® No negative consequences were produced.

® The customer was delighted.

® User interface quality
® (Raskin, The Humane Interface, 2000)
® An interface should be

® effective, habituating, reliable, efficient, and
tested

What can we do with these ideas?

® How do we assess quality on any of
these dimensions?

® How do we teach our students to seek
and assess quality?

Assessing ICT quality

® Each dimension has its own approach
to assessing guality

® Quantitative approaches: metrics

® Qualitative approaches: the “-ilities”

Lessons from engineering?

® The engineering profession is much
older than ICT and equally interested In
quality.

® How does engineering think of, assess,
and teach quality?

® Are there lessons to be learned from
engineering?

What is the engineer’s ultimate
goal?

® A manufacturing process to produce
large numbers of products?

® A single product?

® bridge, power plant, refinery, ...

Quality engineering for

manufacturing

® Product quality

® effectiveness (suitability for purpose) of the
products produced

® Design quality

® originality, feasibility

® Process quality

TQM: process guality as conformance to internal
reguirements

Six Sigma: process quality as defect reduction via
data/statistical analysis

Teaching about process quality

® This topic is always part of industrial,
systems, and manufacturing
engineering curricula; it sometimes
appears in other engineering curricula.

® The following image describes a “six-
sigma’” course from MIT.

Hugh McManrus
Al Haggerty
Prof. Annalisa Weigel

Course Features
Course Description

l A d Technical Requirements
—LEdN KCd em

SHCents working together on a0 Implemeniation exercss
(Protograph by lu"i VeNas)

Course Features
Video lectures

Course Description

This course introduces the fundamental Lean Six Sigma principles that underiay modern continuous improvement
approaches for industey, government and ather arganizations, Lean emerged from the Japanese autemotive
industry, partcularly Toyota, and = focused on the creation of value through the relentiess elimination of waste.
Six Sigma Is a quaity systemn developed at Motorole which focuses on elimination of variation from all processes.
The basic principles have been apphed 10 a wide range of grganizations and sectors to imprave quality,
produdtivity, customer satsfaction, employee satsfaction, time-to-market and financial performance,

This course s offered duning the Independent Actwities Feriod (IAP), which IS a special 4-week term at MIT that
runs from the first week of January until the end of the month.

Technical Requirements

Speoal software s reguired to use some of the files in this course: Xz,

Your use of the WIT OpernCourseWare site and cowrse Mmaterats s subject 0 our Crealive Comrors Lotrae and other Lemms of use

® There are many graduate and
continuing education programs and
courses in “quality engineering” that
emphasize process quality and
statistical techniques.

For example, Rutgers University (New
Jersey, USA) offers a professional
continuing education course titled
"Fundamentals of Quality Engineering”:

Program Overview

The Fundamentals of Quality Engineering is an introductory course that addresses
issues of quantifying quality, use of quality control approaches for variables and
attributes, shift detection in process mean and varance, optimum bolerance design,
quality loss and mulkthariabe guality controd. Quality engineers are responsibe for
ensuring the highest standards of products and services. These specialined engineers
maintain these standards by identifying mistakes and leaming to prevent them.

Who Should Attend?

This course is for professional engineers with an interest in understanding the
fundamentals of praduct quality and contral,

Skills You Will Acquire

You will gain an understanding of the quality contral system. You will also ksarn how to
evaluate and prevent product failures, how to waork with contral charts, and tolerance
design.

Program Outline

1. Quality Value and Engineéring

2. Quality Definitions

3. Quality Engineering

4, Quality and Pracess Capability

5. Traditional Quality Contral Process
6. Variable Cantral Charts

7. Aitribute Contral Charts

B. Lass Function and Quality Level
9. Derivation of the Loss Function
10. Types of Characteristics

11. Quality Evaluations for Different Characteristics
12, Tolerance Design

13, M Tiype

14, L Type

15. 5 Type

Quality engineering for single
products

® Process or product quality?

® What is the quality of a refinery?

® Is it the same as the quality of the production
process that the refinery embodies? What about
the quality of the design process, or of the design?

® Avoidance of failures?

® “Failure is an unaccepted difference between expected and

observed performance” (ASCE)

® What is the quality of a bridge?
® Conformance to requirements
® Maintainability?
® Avoidance of failures?

® Quality of the design process, or of the
design?

Teaching about quality via
fallure

® Engineers have always learned from
failure:

®*“The single most fruitful source of lessons in
engineering judgment exists in the case histories of
failures, which point incontrovertibly to examples of
bad judgement and therefore provide guideposts for
negotiating around the pitfalls in the design process.”
(Petroski, Design Paradigms)

® Success is a much less successful
teacher

®“Basing structural extrapolation on models of success
rather than on failure avoidance ... [culminated] in the
collapse of the Tacoma Narrows Bridge in 1940.”
(Petroski, Design Paradigms)

® Failures have had an important impact
on engineering practice.

® Teaching engineering students about
guality therefore requires that we teach

them about failure.

Fallure in the engineering
curriculum

® MIT: Design by Failure: proposed
course for all first-year engineering
students
® Examples from all engineering disciplines
® Civil: Tacoma-Narrows Bridge failure

® Chemical: Bhopal accident

® Nuclear: Chernobyl

® Rochester Institute of Technology

® Use of aircraft crash cases in teaching
® design failures
® maintenance failures

® humans and computers in the loop

/
ol 17

£

E) Beyond

- K

Forensic
Case Studies
For Civil Engineers

Norbert]. Delatte Jr.,
Ph.D., P.E.

ASCE
PRESS

FOREWORD Xl
by Kenneth L. Carper

PREFACE X1l
1 Why Case Studies? 1
Organization of This Book 3
Notes to the Student 4
Sources for Case Materials 5
2 Statics and Dynamics 7
Hyatt Regency Walkway 8
Tacoma Narrows Bridge 26
Aircraft Impacts 38
Other Cases 42
3 Mechanics of Materials 51
Quebec Bridge 51
Point Pleasant Bridge Collapse 70
Comet Jet Aircraft Crashes 82
Other Cases 86
4 Structural Analysis 89
Agricultural Product Warehouse Failures 90

Ronan Point 97

il

vl BEYOND FAILURE CONTENTS ix

L'Ambiance Plaza Collapse 107 9 Construction Materials 301
Cleveland Lift-Slab Parking Garage 121 Austin Concrete Dam Failure 103
Kemper Arena 124 Liberty Ship Hull Failures 310
Other Cases 26 Willow Island Cooling Tower Collapse ila
Boston’s Big Dig Tunnel Collapse 325
5 Reinforced Concrete Structures 129 High-Alumina Cement 3130
Air Force Warehouse Shear Failures 130 Other Cases 330
2000 Commonwealth Avenue 133
Skyline Plaza in Bailey's Crossroads 144 10 Management, Ethics, and Professional
Harbour Cay Condominium 1449 Issues 1313
Bombing of the Oklahoma City Murrah Citicorp Tower 333
Federal Building 155 Space Shuttle Challenger 345
The P"entagon Arack 162 Sampoong Superstore, Korea 352
Orher Cases 167 Misuse of the Professional Engineer License 357
Property Loss Invesnigations 359
6 Steel Structures 173
Hartford Civic Center Stadium Collapse 174 ApPPENDIN A: Notes to the Professor i6l
Mianus River Bridpe Collapse 184 R . —
Cold-Formed ."i.rcr:FHn:nrn ll".ljm.ﬂrrucrinn Failure 188 APPERDIX B: The ASCE Code of Ethics AT
The World Trade Center Artacks 195 ArPPENDIN C: Some Cases on Video and DVD 185
Pil‘t:ihurgh Convention Center Expansion
Joint Failure 206 REFERENCES 391
Minneapolis I-35W Bridge Collapse 211 I 403
Other Cases 215
ABOUT THE AUTHOR 407
7 Soil Mechanics, Geotechnical
Engineering, and Foundations 221
Teton Dam 223
Vaiont Dam Reservoir Slope Stabilicy Faillure 234
The Transcona and Fargo Grain Elevarors 249
Other Cases 255
& Fluid Mechanics and Hydraulics 257
Johnstown Flood 257
Malpasser Dam 267
Schoharie Creek Bridge 277
Mew Orleans Hurricane Katrina
Leves Failures 287

Other Cases 299 |

Teaching ICT Students about
Quality

® Software engineering

* For many years, software engineering (and software
engineering education) has paid explicit attention to
“quality”.

* |ICT Job frameworks

 Quality topics appear explicitly in European job
frameworks.

e Computer Science

* How do we teach beginning students about code and
algorithm quality?

Quality In Software Engineering

® SWEBOK (IEEE-CS body of
knowledge)

® Fundamentals
® Value and cost of quality
® Static techniques
® Formal methods
® Verification and validation
® Reviews and audits
® Dynamic techniques

® Testing

® Processes vs. Products

® Process quality
® Standards for software engineering processes

® .. the quality of a software product is largely
determined by the quality of the software
development and maintenance processes used to
build it” (Paulk, 1995)

® Product quality

® applies to all software products: requirements
specifications, architectures, designs, code, test
plans, documentation, reports, ...

® SE2004

® Software quality is a pervasive concept that
affects, and Is affected by, all aspects of software
development, support, revision, and

maintenance.

® It encompasses the quality of work products
developed and/or modified (both intermediate

and deliverable work

oroducts) and the quality of

the work processes used to develop and/or
modify the work products.

® Quality work product attributes include
functionality, usability, reliability, safety,
security, maintainability, portability, efficiency,
performance, and availability.

e’ wf 1 & W W WGl W \JIVIV‘-II\-] f ¥ 1 IVVI\J\-\J /el 1 Wi - W/l i -l

Software product quality standards:
ISO-IEC 9126

Software process quality: ISO 9000,
CMMI

Software quality processes: IEEE 730,
IEEE 1061

Process assurance: planning and
reporting

Product assurance

® Root cause analysis, defect prevention

® Metrics and measurement

. Aﬁﬁf\f\f\m’\lf\" I\'F ra' B lf\l:"'\l ﬂ++lﬁ:|"\l l"'f\ﬁ

Teaching SW engineers about quality

® The usual approach

® Faculty lectures on quality topics and
standards

® Student readings of appropriate materials

® Problems with this approach
® Lack of student interaction

® Disconnection with project work

Other approaches

® Problem-based learning (PBL):

® astudent-centered instructional strategy in which
students collaboratively solve problems and reflect
on their experiences (Wikipedia)

® Characteristics include

® Learning is driven by challenging, open-ended, ill-defined
and ill-structured, practical problems.

® Students work in collaborative groups.

® Teachers take on the role of "facilitators" of learning.

® (Richardson and Delaney, 2010) Teams of
M.Sc. students in a SWE quality module at
the University of Limerick were asked to
write the software guality plan for a hospital.
They first viewed a video that gave them a
sense for the context:

*\www.youtube.com/watch?v=-xrrk-XhgVc

http://www.youtube.com/watch?v=-xrrk-XhgVc
http://www.youtube.com/watch?v=-xrrk-XhgVc
http://www.youtube.com/watch?v=-xrrk-XhgVc
http://www.youtube.com/watch?v=-xrrk-XhgVc
http://www.youtube.com/watch?v=-xrrk-XhgVc

® The lecturer served as a facilitator to
the groups, circulating among them.

® Short lectures were given on specific
topics, as needed.

® A subject-matter expert was made
avallable to the groups.

® Authors’ conclusions:

® PBL seems to have significantly increased
student involvement and satisfaction.

® PBL may not suit all student learning styles.

® Assessment of student learning may be
more difficult with PBL.

® It's important to have strong links with
iIndustry when using PBL to teach software
quality.

® Major project course
® (Towhidnejad 2002; Doerschuk 2004)

® Example 1: This undergraduate class is structured
as a small software development organization.
divided into five-member development teams;
students use Humphrey’'s PSP.

® Build 1: generation of requirements and design documents
and a prototype

® Build 2: development of final product

® The software quality assurance function is
provided by graduate students in a software
testing course.

® Buid1l

¢ formal inspection of requirements and design specification documents

¢ construction of test plan from requirements specification

® Build2

¢ undergraduate students provided internal SQA functions

¢ graduate students provided external SQA functions, such as independent
verification and validation

® Example 2: Student development teams
are divided into subteams

® Team A develops the design

® Team B inspects the design

® Teams switch roles between development
phases

® Comments

® The authors looked at interaction between
students, but this could have been studied
more formally (phenomenography?)

Both papers observed that undergraduate
students don’t seem to understand the
Importance of software quality.

It's not easy to incorporate realistic software

processes (including quality processes) Into
student environments.

The need to teach about faillure

® It's as important to expose software
engineering students to failures as it is
In other branches of engineering.

® System and software engineering
fallures are well-known and widely

reported.

® Well-documented major cases include

® London Ambulance Service dispatching system
(1987-92)

® THERAC-25 radiation therapy instrument (1985-
87)

® US Federal Aviation Administration (FAA):
Advanced Automation System ($2.5 billion, 1989-
1994)

® US Federal Bureau of Investigation (FBI): Virtual
Case File ($170 million, 2001-2005)

® Failures do appear in computing
curricula; the THERAC-25 Is often

discussed In courses dealing with ethics
and technology.

® Larger software engineering failures
can be considered as examples of
falled software engineering processes:

® FAA: incomplete and unstable requirements

® LAS: testing; verification and validation

® However, software engineering
students are rarely if ever presented
with detailed case studies of
system/software failures.

® Few complete case studies are
avallable. Exceptions include:

® LAS:
www.cCs.ucl.ac.uk/staff/A.Finkelstein/las/lasc
ase0.9.pdf

® Therac-25: Leveson, Safeware, System
Safety and Computers, 1995

http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las/lascase0.9.pdf
http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las/lascase0.9.pdf

® However, the study of failure needs to
play a role across the software
engineering curriculum.

® Examples of industrial-strength design
and architecture fallures would be
particularly interesting.

® Parnas’ 1972 paper On the Criteria to Be
Used In Decomposing Systems Into
Modules Is useful In this context, but the
application is still rather small.

Quality In ICT Job
Frameworks

® Job frameworks for ICT

® SFIA (UK), AITT (Germany), CIGREF
(France)

® European e-Competence reference
framework (www.ecompetences.eu)

® Topics listed include quality strategy development,
guality assurance and quality management

http://www.ecompetences.eu

® ICT Lane: qualifications framework, within
the ambit of the European Qualifications
Framework

® The ideais to link qualifications to appropriate
framework items.

® It would therefore be possible in principle to
identify a specific qualification that would
correspond to a quality item In a job framework.

® We could then see how ICT quality topics are
taught to those seeking this qualification.

® However, all of this is still a work in progress.

A Framework for ICT
Foundation Degrees

® A recent effort in the UK (Foundation
Degrees Forward: www.fdf.ac.uk) Is
explicitly linked to the SFIA framework.

® A degree specification was developed
as part of a strategic partnership
between ICT employers and higher
education Institutions.

http://www.fdf.ac.uk

® One of the FDF learning outcomes is
devoted entirely to quality; its indicative
content includes

® The components of software quality — internal and
external aspects; validation and verification, reliability,
conformance, completeness, maintainability

® This specification requires courses to be
collaborative efforts between industry and
academia.

® Workplace efforts and assessment are
therefore an essential part of such courses.

® Although the FDF specification of
foundation ICT degrees appears to be well-
founded, it remains to be seen how quality
topics are actually taught/learned and
assessed within this hybrid
university/workplace educational model.

The need to teach ICT students
about code quality

® What do our students mean when they
talk about the quality of a computer
program??

® Where do they get their ideas about
code quality?

® How can we teach introductory students
about code quality?

®A recent study (Lewis et al, CACM, May
2010) surveyed student opinions on the
following statements:

® On a programming assignment, what matters is
getting the desired result, not how you arrive at
the result.

® 58% of first-year students agreed

® 54% of final-year students agreed

® |f a program works it doesn’t matter how it is
written.

® 45% of first-year students agreed

® 20% of final-year students agreed

® Doing things the “right” way isn’t as
Important as just pushing through to a
solution.

® 56% of first-year students agreed

® 32% of final-year students agreed

® This data was obtained from CS
students at a major US university.
Although gquality was not the specific
target of this study, It suggests that a
significant proportion of successful CS
students may lack a strong sense for
the meaning of code gquality.

® This topic is pursued further in a recent
paper by Pears. He surveys literature
on student learning in programming
courses, and reports that:

® Early learning in programming is dominated
by syntactic concerns.

® Most students lack a holistic view of
program function.

® Students focus on code at the operation/line
level.

® He summarizes this literature by saying

® “..many students at the conclusion of an
Introductory programming course when given a
functional description are unable to write a piece of
software that meets the requirements.”

® “..many students are not able to explain what a
piece of code does in a more advanced manner

than the line by line approach ... ”

® Kolikant and Mussai (2008) state

® “..aslong as they had any operations
written correctly students considered the

program partially correct’

® They feel that this conception may derive
from the way In which student programs are

assessed.

® Students often feel that if a program
compiles 1t Is correct (and therefore of
good quality).
® ... there were some students who [at the end of the
academic year] still believed ... that a program is

correct when it is free from syntactical errors”
(Stamouli and Huggard, 2006)

What can be done?

Some scholars (e.g., Patton and McGilll,
2006) propose that software guality can
be taught by utilizing longitudinal
portfolios of software artifacts, along
with automated software quality
metrics.

® Pears suggests that educators should

® adopt an approach to code development
based on holistic goals and plans

® design formative assessment strategies that
emphasize quality aspects

® include testing and debugging as explicit
parts of the curriculum

Builld on innate student
understanding

® A recent paper (CACM, July 2010),
examined the concepts of concurrency
held by students at the start of an
Introductory programming course.

® It concluded that these students’
Intuitive understanding of concurrency
was roughly equivalent to that of

experienced students beginning a
concurrency course.

® If this is the case for concurrency,
perhaps students also have intuitive
concepts of software quality. (Future
research topic)

® If this is the case, can such concepts be
used as the basis for a deeper
understanding of software quality?

Conclusions

® How should we teach ICT students
about quality?

® It depends on the target; are we
Interested In process quality or product
quality?

® Process quality

® It may make sense to teach engineering
process quality: Six Sigma, TQM

® We definitely need to teach key software
engineering quality processes throughout
ICT curricula:

® Testing

® Validation and verification

® Product quality

® Use software engineering failures as
teaching tools

® This is done much more in other engineering
disciplines.

Software engineering has good examples of failed
development projects and software processes; all
ICT students need to see such examples.

® Are there examples of poorly crafted industrial-

strength software products below the system level.
algorithms, requirements, architecture, design,
code?

Such examples would be very useful in the
classroom, but they may be difficult to obtain.

® What about artifacts from other ICT
disciplines? Do we have examples of
iIndustrial-strength instruction sets of
poor quality that can be used In
teaching?

® What about user interfaces, hardware
architectures, and operating system
designs?

® We need to work with beginning
students to get them to understand that
guality Is an essential aspect of good
code.

® We need to reinforce this understanding
throughout all ICT curricula for all
artifacts.

