Quality & Evolution: some relationships

Michel Wermelinger

Computing Department
The Open University, UK
http://michel.wermelinger.ws

Product Evolution

Bennett & Rajlich. Software maintenance and evolution: a roadmap. ICSE 2000

Quality

Principle of Software Uncertainty

The real-world outcome of any E-type software execution is inherently uncertain with the precise area of uncertainty also not knowable

Declining Quality

- Unless rigorously adapted and evolved to take into account changes in the operational environment, the quality of an E-type system will appear to be declining
 - 7th law of software evolution

Continuing change

- An E-type system must be continually adapted or else it becomes progressively less satisfactory in use
 - 1st law of software evolution

Continuing growth

- The functional capability of E-type systems must be continually enhanced to maintain user satisfaction over the system lifetime
 - 6th law of software evolution

Punctuated Equilibrium

Wermelinger et al. Design principles in architectural evolution: a case study. ICSM 2008

Increasing complexity

- As an E-type system is changed its complexity increases and becomes more difficult to evolve unless work is done to maintain or reduce the complexity
 - 2nd law of software evolution

Maintenance

	Correction	Enhancement
Proactive	Preventive	Perfective
Reactive	Corrective	Adaptive

April. Studying Supply and Demand of Maintenance Services. QUATIC 2010

Luijter & Visser. Faster defect resolution with higher quality of software. SQM 2010

Stable Dependencies Principle

 Dependencies should be in the direction of stability

Martin. Large-scale stability. C++ Report 1997

Wermelinger et al. Design principles in architectural evolution: a case study. ICSM 2008

Open/Closed Principle

 Entities should be open for extension but closed for modification.

Meyer. Object-Oriented Software Construction. Prentice Hall 1988

Cloning considered harmful

Hordijk et al. Harmfulness of Code Duplication - A Review of the Evidence, EASE 2009

Maintainability of clones

% of methods

Lozano & Wermelinger. Assessing the effect of clones on changeability. ICSM 2008

Evolution of quality cost

after Fairley, Software Engineering Concepts, McGraw-Hill 1985

Evolution for quality prediction

Nagappan et al. Change Bursts as Defect Predictors. ISSRE 2010

Process evolution

Processes and applications are both executed, they both address requirements that need to be understood, both benefit from being modeled by a variety of sorts of models, both must evolve guided by measurement, and so forth.

Osterweil. Software processes are software too, revisited. ICSE 1997

Process Improvement

from cmmilevels.com

Plösch et al. A method for continuous code quality management. QUATIC 2010

Process Quality Evolution

Bettin et al. A PMO Installation for IT Project Management. QUATIC 2010

Education

- Holistic view
 - Human / Social
 - Legal / Ethical
 - Economic

Conclusions

- E-type evolution processes are multi-level, multi-loop, multi-agent feedback systems
 - 8th law of software evolution