Quality & Evolution:
some relationships

Michel Wermelinger
Computing Department

The Open University, UK
http://michel.wermelinger.ws

« 9
(_) I
The Open
University

‘ Product Evolution

initial development

first running version volution changes

loss of evolvability

servicing discontinued

phase-out
close-down

switch-off

Bennett & Rajlich. Software maintenance and evolution: a roadmap. ICSE 2000

Quality

Gluality
Characteristics

Subcharacteristics

S0 9126-2
External Metrics

Functionality

f___f__;auitabilihr
F_____——~Accurac~_.f
Interoperatility

_"-:-:—:___—:Securihr

Functionality Compliance ——

il aturity

Reliability

[Faulttolerance

ﬁﬁecwerability —_———
Felighility Compliance

Internal and
External Quality

Usability

F#_#______annderStandabili’w
I ———— Leatnahility
—— Qperahbility

Attractiveness

Llsahility Compliance

Efficiency

. ——Time behavior
——Resource utilization

T ————Efficiency Compliance

Analyzahbility
ﬂt}hangeabiliw

hlaintainahbility

Stability

ﬁﬂastabiliw

Maintainahbility Compliance —

Fortability

ﬁﬁdaptabiliw
" ——— Installahility
— Co-existence

ﬁﬁeplaceahilw

Fortahility Compliance

Metrics

I

S0 9126-3:
ternal Metrics

Principle ot Software Uncertainty

The real-world outcome of any E-type
software execution is inherently uncertain
with the precise area of uncertainty also not

knowable

Madhaviji, Ramil and Perry (eds.) Software Evolution and Feedback. Wiley 2006

Declining Quality

Unless rigorously adapted and evolved to
take into account changes in the operational
environment, the quality of an E-type system
will appear to be declining

o 7™ law of software evolution

product
* * k % internal * Kk ok k< quality
* % % external *;* * |
> context

Continuing change

An E-type system must be continually

adapted or else it becomes progressively less
satisfactory in use

o 15t law of software evolution

perfective

* % * % } * k% k% %
i

adaptive

* k k%

Continuing growth

The functional capability of E-type systems
must be continually enhanced to maintain
user satisfaction over the system lifetime

a 6% law of software evolution

perfective

* %k % % } * k% k% %

adaptive

* % * * k * %
; 1

‘ Punctuated Equilibrium

250

200
150
oo a h > o

Plugins

LY L '\
oY 7 oo LR

N q’q« e ﬂ:- ‘b ‘b ﬂ:. ?
150
100
L))
£
@ 50
o
0

R g S

Wermelinger et al. Design principles in architectural evolution: a case study. ICSM 2008

Increasing complexity

As an E-type system Is changed its
complexity increases and becomes more
difficult to evolve unless work is done to
maintain or reduce the complexity

o 2" [aw of software evolution

perfective preventive

* % % % : > * % % . * % % %
adaptive corrective

Maintenance

Correction Enhancement
Proactive Preventive Perfective
Reactive Corrective Adaptive
Adaptive
Preventive
Perfective
=Query
= Corrective

April. Studying Supply and Demand of Maintenance Services. QUATIC 2010

Maintainability

source code measurements

product properties

Volume

Duplication

Unit complexity

6000 4

5000

4000~

Count
]
8

2000 -

1000

Unit size

Unit interfacing

Module coupling

0 200 400 600 800 1000
Defect resolution time (days)
ISC/IEC 9128

Analysability

Changeability
Maintainability
Stability

Testability

Luijter & Visser. Faster defect resolution with higher quality of software. SQM 2010

Stable Dependencies Principle

Dependencies should be in the direction of

stability
Martin. Large-scale stability. C++ Report 1997

0.06
0.05
0.04
0.03

0.02

Dependencies %

0.01

0.00
o S SRS T SR P S N
- qj:' i FI:\ = .1...5.:' o o .»3.;1’ n;';} .1;;’ o o e

Wermelinger et al. Design principles in architectural evolution: a case study. ICSM 2008

‘ Open/Closed Principle

= Entities should be open for extension but
closed for modification.

Meyer. Object-Oriented Software Construction. Prentice Hall 1988

kq"f:f?'fp q’q:\ﬂ:\ P el ST et BT Y ot et] fb‘b‘bfb'\“ff" LRI RS

300
250
20

Extension Foints
én =
] o] L] o L]

Releases

M Forced Deleted M Unforced Deleted [Kept B Frevious M Forced added B Unforced added

‘ Cloning considered harmtul

Duplication
+
— + _
Co-change +
Inconsistent Code Code
change comprehension size

- +

Errors

A/
Changeability

System quality

Hordijk et al. Harmfulness of Code Duplication - A Review of the Evidence, EASE 2009

work increase

Maintainability of clones

900%

700%

500%

300%

100%

X ganttProject
+ JEdit

- freecol

< jboss

100%

% of methods

Lozano & Wermelinger. Assessing the effect of clones on changeability. ICSM 2008

‘ Evolution of quality cost

10007 A
larger software projects
S00T1
r’\I IBM-SSD
200+ L~
. O E GTE
S 100+ . v
D
= B0 %
s 207 Median (TRW survey) .
% 20%
5 oo+ DCD SAFEGUARD _,U-"‘"J
= y
=
[y 4
o 10
5__
smaller software projacts
ol (]- (Boehm, 1980)

requirements design code development acceptance operation
test test

after Fairley, Software Engineering Concepts, McGraw-Hill 1985

‘ Evolution for quality prediction

Gap Burst
Size Size ! ' R - R
Builds
1 1
1 2
2 1
2 4 Changes
9 4 Bursts
Burst: {7} Burst: {8} Burst: {9}
L
0.80 — “ ‘
[] []
088 - - -
-]
0.86 . o’ * * .
L]
]
a4 " * ’ .
| | | | | I | | | | I
2 4 6 10 2 4 6 8 10

Nagappan et al. Change Bursts as Defect Predictors. ISSRE 2010

Process evolution

Processes and applications are both executed, they
both address requirements that need to be
understood, both benefit from being modeled by a
variety of sorts of models, both must evolve
guided by measurement, and so forth.

Osterweil. Software processes are software too, revisited. ICSE 1997

* % % * % * * k% k% *

‘ Process Improvement

CMMI Staged Maturity Levels

from cmmilevels.com

Quality management

Qu ality model

Static code

analys s took |

Cetailed analysis

Measurement
=== results

Chrernviewe diagrams

Setup
and
Tailor

Analyze —\

Define quality ‘{ I ﬁeﬁne quality ‘{]
goals model

k\ approach

development
environment

efine and tailor

monitaring

/ Tailor quallty\ Integrate into the
model and development
K soope / procass

Adjust Ia‘/_ﬁadjust qualit‘,—r\

and

control '_munlmrlng _/ |

Measure
and

(/ Audit quality\ |
'-\‘_monitoring /

Enhance actions

Plan quality

Analyze results Measure

Plosch et al. A method for continuous code quality management. QUATIC 2010

‘ Process Quality Evolution

Project
Management
Support

Contract
Management

Bettin et al. A PMO Installation for IT Project Management. QUATIC 2010

Education

POSTGRADUATE COMPUTING
M882 Managing the software enterprise

=
=
0
| .
@
=
[=
o
c
a
(=8
o
@
=
|_

Holistic view

2 Human / Social
o Legal / Ethical
o Economic

Conclusions

E-type evolution processes are multi-level,
multi-loop, multi-agent feedback systems

a 8t law of software evolution

	Quality & Evolution:�some relationships
	Product Evolution
	Quality
	Principle of Software Uncertainty
	Declining Quality
	Continuing change
	Continuing growth
	Punctuated Equilibrium
	Increasing complexity
	Maintenance
	Maintainability
	Stable Dependencies Principle
	Open/Closed Principle
	Cloning considered harmful
	Maintainability of clones
	Evolution of quality cost
	Evolution for quality prediction
	Process evolution
	Process Improvement
	Quality management
	Process Quality Evolution
	Education
	Conclusions

