Quality & Evolution:
some relationships

Michel Wermelinger
Computing Department

The Open University, UK
http://michel.wermelinger.ws

« 9
( _) I
The Open
University



‘ Product Evolution
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Bennett & Rajlich. Software maintenance and evolution: a roadmap. ICSE 2000
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Principle ot Software Uncertainty

The real-world outcome of any E-type
software execution is inherently uncertain
with the precise area of uncertainty also not

knowable

Madhaviji, Ramil and Perry (eds.) Software Evolution and Feedback. Wiley 2006



Declining Quality

Unless rigorously adapted and evolved to
take into account changes in the operational
environment, the quality of an E-type system
will appear to be declining

o 7™ law of software evolution
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Continuing change

An E-type system must be continually

adapted or else it becomes progressively less
satisfactory in use

o 15t law of software evolution
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Continuing growth

The functional capability of E-type systems
must be continually enhanced to maintain
user satisfaction over the system lifetime

a 6% law of software evolution
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‘ Punctuated Equilibrium
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Wermelinger et al. Design principles in architectural evolution: a case study. ICSM 2008




Increasing complexity

As an E-type system Is changed its
complexity increases and becomes more
difficult to evolve unless work is done to
maintain or reduce the complexity

o 2" [aw of software evolution
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Maintenance
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April. Studying Supply and Demand of Maintenance Services. QUATIC 2010




Maintainability

source code measurements
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Luijter & Visser. Faster defect resolution with higher quality of software. SQM 2010




Stable Dependencies Principle

Dependencies should be in the direction of

stability
Martin. Large-scale stability. C++ Report 1997
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Wermelinger et al. Design principles in architectural evolution: a case study. ICSM 2008



‘ Open/Closed Principle

= Entities should be open for extension but
closed for modification.

Meyer. Object-Oriented Software Construction. Prentice Hall 1988
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‘ Cloning considered harmtul
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Hordijk et al. Harmfulness of Code Duplication - A Review of the Evidence, EASE 2009




work increase

Maintainability of clones
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Lozano & Wermelinger. Assessing the effect of clones on changeability. ICSM 2008




‘ Evolution of quality cost
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‘ Evolution for quality prediction
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Nagappan et al. Change Bursts as Defect Predictors. ISSRE 2010




Process evolution

Processes and applications are both executed, they
both address requirements that need to be
understood, both benefit from being modeled by a
variety of sorts of models, both must evolve
guided by measurement, and so forth.

Osterweil. Software processes are software too, revisited. ICSE 1997
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‘ Process Improvement

CMMI Staged Maturity Levels

from cmmilevels.com




Quality management
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Plosch et al. A method for continuous code quality management. QUATIC 2010




‘ Process Quality Evolution
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Bettin et al. A PMO Installation for IT Project Management. QUATIC 2010




Education
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Conclusions

E-type evolution processes are multi-level,
multi-loop, multi-agent feedback systems

a 8t law of software evolution
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